Advertisements
Advertisements
Question
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Solution
Let y = (1 + sin2x)2 (1 + cos2x)3
Differentiating w.r.t. x, we get
`"dy"/"dx"="d"/"dx"[(1+ sin^2x)^2(1 + cos^2x)^3]`
`= (1 + sin^2x)^2."d"/"dx"(1+ cos^2x)^3+(1+cos^2x)^3."d"/"dx"(1+sin^2x)^2`
`= (1 + sin^2x)^2 xx 3(1 + cos^2x)^2."d"/"dx"(1 + cos^2x) + (1 + cos^2x)^3 xx 2(1 + sin^2x)."d"/"dx"(1 + sin^2x)`
`=3(1+sin^2x)^2(1+ cos^2x)^2.[0 + 2cosx. "d"/"dx"(cosx)] + 2(1 + sin^2x)(1 + cos^2x)^3.[0 + 2sinx."d"/"dx"(sinx)]`
= 3(1 + sin2x)2(1 + cos2x)2.[2cosx( – sinx)] + 2(1 + sin2x)(1 + cos2x)3[2sinx .cosx]
= 3(1 + sin2x)2(1 + cos2x)2(– sin2x) + 2(1 + sin2x)(1 + cos2x)3(sin2x)
= sin2x(1 + sin2x)(1 + cos2x)2 [– 3(1 + sin2x) + 2(1 + cos2x)]
= sin2x(1 + sin2x)(1 + cos2x)2(– 3 – 3sin2x + 2 + 2cos2x)
= sin2x(1 + sin2x)(1 + cos2x)2[– 1 – 3sin2x + 2(1 – sin2x)]
= sin2x(1 + sin2x)(1 + cos2x)2(–1 – 3sin2x + 2 – 2sin2x)
= sin2x(1 + sin2x)(1 + cos2x)2(1 – 5sin2x).
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x :
`cos^-1(sqrt(1 - cos(x^2))/2)`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.