Advertisements
Advertisements
Question
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Solution
Let y = `(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiating w.r.t. x,we get,
`"dy"/"dx" = "d"/"dx"(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
`= 5(sqrt(3x - 5) - 1/sqrt(3x - 5))^4."d"/"dx"(sqrt(3x - 5) - 1/sqrt(3x - 5))`
`= 5(sqrt(3x - 5) - 1/sqrt(3x - 5))^4.["d"/"dx"(3x - 5)^(1/2) - "d"/"dx"(3x - 5)^(-1/2))]`
`= 5(sqrt(3x - 5) - 1/sqrt(3x - 5))^4. [1/2(3x - 5)^(-1/2)."d"/"dx"(3x - 5) - (-1/2)(3x - 5)^(-3/2)."d"/"dx"(3x - 5)]`
`= 5(sqrt(3x - 5) - 1/sqrt(3x - 5))^4. [1/(2sqrt(3x - 5)).(3 × 1 - 0) + 1/(2(3x - 5)^(3/2)).(3 × 1 - 0)]`
`= 5(sqrt(3x - 5) - 1/sqrt(3x - 5))^4. [3/(2(3x - 5)^(1/2)) +3/(2(3x - 5)^(3/2))]`
`= 5(sqrt(3x - 5) - 1/sqrt(3x - 5))^4. 3/2 [1/(3x - 5)^(1/2) + 1/(3x - 5)^(3/2)]`
`= 15/2 (sqrt(3x - 5) - 1/sqrt(3x - 5))^4. [(1 × (3x - 5))/((3x - 5)^(1/2) × (3x - 5)^1) + 1/(3x - 5)^(3/2)]`
`= 15/2 (sqrt(3x - 5) - 1/sqrt(3x - 5))^4. [(1 × (3x - 5))/((3x - 5)^(1/2 + 1)) + 1/(3x - 5)^(3/2)]`
`= 15/2 (sqrt(3x - 5) - 1/sqrt(3x - 5))^4. [(3x - 5)/((3x - 5)^(3/2)) + 1/(3x - 5)^(3/2)]`
`= 15/2 (sqrt(3x - 5) - 1/sqrt(3x - 5))^4. [(3x - 5 + 1)/((3x - 5)^(3/2))]`
`= (15(3x - 4))/(2(3x - 5)^(3/2))(sqrt(3x - 5) - 1/sqrt(3x - 5))^4`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x:
`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x:
log (sec 3x+ tan 3x)
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
Differentiate y = etanx w.r. to x
If y = sin−1 (2x), find `("d"y)/(""d"x)`
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.