Advertisements
Advertisements
Question
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Solution
Let `y = tan^-1((5 -x)/(6x^2 - 5x - 3))`
`y = tan^-1((5 -x)/(6x^2 - 5x - 4 + 1))`
`y = tan^-1[(5 - x)/(1 + (6x^2 - 5x - 4))]`
`y = tan^-1[((2x + 1) - (3x - 4))/(1 + (2x + 1)(3x - 4))]`
`y = tan^-1(2x + 1) – tan^-1(3x – 4) ...[tan^(-1) x - tan^(-1) y = tan^(-1) ((x - y)/(1 + xy))]`
Differentiating w.r.t. x, we get,
`dy/dx = d/dx [tan^-1(2x + 1) – tan^-1(3x – 4)]`
`dy/dx = d/dx [tan^-1(2x + 1)] - d/dx [tan^-1(3x - 4)]`
`dy/dx = (1)/(1 + (2x + 1)^2). d/dx (2x + 1) - (1)/(1 + (3x - 4)^2). d/dx (3x - 4) ...[tan^(-1) x = 1/(1 + x^2)]`
`dy/dx = (1)/(1 + (2x + 1)^2).(2 xx 1 + 0) - (1)/(1 + (3x - 4)^2).(3 xx 1 - 0) ...[(d/dx x = 1), (d/dx k = 0)]`
`dy/dx = (2)/(1 + (2x + 1)^2) - (3)/(1 + (3x - 4)^2`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x :
cos3[cos–1(x3)]
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3
Differentiate y = etanx w.r. to x
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
Derivative of (tanx)4 is ______
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.
If y = log (sec x + tan x), find `dy/dx`.