Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
उत्तर
Let `y = tan^-1((5 -x)/(6x^2 - 5x - 3))`
`y = tan^-1((5 -x)/(6x^2 - 5x - 4 + 1))`
`y = tan^-1[(5 - x)/(1 + (6x^2 - 5x - 4))]`
`y = tan^-1[((2x + 1) - (3x - 4))/(1 + (2x + 1)(3x - 4))]`
`y = tan^-1(2x + 1) – tan^-1(3x – 4) ...[tan^(-1) x - tan^(-1) y = tan^(-1) ((x - y)/(1 + xy))]`
Differentiating w.r.t. x, we get,
`dy/dx = d/dx [tan^-1(2x + 1) – tan^-1(3x – 4)]`
`dy/dx = d/dx [tan^-1(2x + 1)] - d/dx [tan^-1(3x - 4)]`
`dy/dx = (1)/(1 + (2x + 1)^2). d/dx (2x + 1) - (1)/(1 + (3x - 4)^2). d/dx (3x - 4) ...[tan^(-1) x = 1/(1 + x^2)]`
`dy/dx = (1)/(1 + (2x + 1)^2).(2 xx 1 + 0) - (1)/(1 + (3x - 4)^2).(3 xx 1 - 0) ...[(d/dx x = 1), (d/dx k = 0)]`
`dy/dx = (2)/(1 + (2x + 1)^2) - (3)/(1 + (3x - 4)^2`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x:
log (sec 3x+ tan 3x)
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`
Differentiate sin2 (sin−1(x2)) w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.
If y = cosec x0, then `"dy"/"dx"` = ______.
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
If y = log (sec x + tan x), find `dy/dx`.