Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : cosec–1 (e–x)
उत्तर
Let y = cosec–1 (e–x)
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"["cosec"^-1 (e^-x)]`
= `(-1)/(e^-x sqrt((e^-x)^2 - 1))."d"/"dx"(e^-x)`
= `(-1)/(e^-x sqrt(e^(-2x) - 1)) xx e^-x."d"/"dx"(– x)`
= `(-1)/sqrt(e^(-2x) - 1) xx -1`
= `(1)/(sqrt(1/e^(2x) - 1)`
= `e^x/(sqrt(1 - e^(2x))`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
Differentiate the following w.r.t. x :
`sin^-1(sqrt((1 + x^2)/2))`
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x :
cos3[cos–1(x3)]
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x: xe + xx + ex + ee
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`
Differentiate sin2 (sin−1(x2)) w.r. to x
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
Derivative of (tanx)4 is ______
y = {x(x - 3)}2 increases for all values of x lying in the interval.
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
If y = cosec x0, then `"dy"/"dx"` = ______.
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.