Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
उत्तर
Let y = `log[(e^(x^2)(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
Using
log(A.B) = logA + logB
y = `loge^(x^2) + log(((5 - 4x)^(3/2))/root(3)(7 - 6x))`
= `loge^(x^2) + log(5 - 4x)^(3/2) - log(root(3)(7 - 6x))`
= `x^2loge + 3/2log(5 - 4x) - log(7 - 6x)^(1/3)`
= `x^2 + 3/2log(5 - 4x) - 1/3log(7 - 6x)`
Now,
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"x^2 + 3/2"d"/"dx"log(5 - 4x) - 1/3"d"/"dx"log(7 - 6x)`
= `2x + (3)/(2)(1)/(5 - 4x)(-4) - (1)/(3)(1)/((7 - 6x))x(-6)`
= `2x - (6)/((5 - 4x)) + (2)/((7 - 6x)`
`2x - (6)/(5 - 4x) + (2)/(7 - 6x)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x :
cos3[cos–1(x3)]
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x :
`cos^-1(sqrt(1 - cos(x^2))/2)`
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
If y = sin−1 (2x), find `("d"y)/(""d"x)`
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate sin2 (sin−1(x2)) w.r. to x
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______
If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.