Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
उत्तर
Let y = `(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
= `(e^(2x) - 1/e^(2x))/(e^(2x) + 1/e^(2x))`
= `(e^(4x) - 1)/(e^(4x) + 1)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"((e^(4x) - 1)/(e^(4x) + 1))`
= `((e^(4x) + 1)."d"/"dx"(e^(4x) - 1) - (e^(4x) - 1)."d"/"dx"(e^(4x) + 1))/(e^(4x) + 1)^2`
= `((e^(4x) + 1)[e^(4x)."d"/"dx"(4x) - 0] - (e^(4x) - 1)[e^(4x)."d"/"dx"(4x) + 0])/(e^(4x) + 1)^2`
= `((e^(4x) + 1).e^(4x) xx 4 - (e^(4x) - 1).e^(4x) xx 4)/(e^(4x) + 1)^2`
= `(4e^(4x)(e^(4x) + 1 - e^(4x) + 1))/(e^(4x) + 1)^2`
= `(4e^(4x)(cancel(e^(4x)) + 1 - cancel(e^(4x)) + 1))/(e^(4x) + 1)^2`
= `(4e^(4x)(1 + 1))/(e^(4x) + 1)^2`
= `(4e^(4x)(2))/(e^(4x) + 1)^2`
= `(8e^(4x))/(e^(4x) + 1)^2`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
If y = sin−1 (2x), find `("d"y)/(""d"x)`
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
If y = log (sec x + tan x), find `dy/dx`.