Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
उत्तर
Let y = `(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiating w.r.t. x,we get,
`"dy"/"dx" = "d"/"dx"(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
`= 5(sqrt(3x - 5) - 1/sqrt(3x - 5))^4."d"/"dx"(sqrt(3x - 5) - 1/sqrt(3x - 5))`
`= 5(sqrt(3x - 5) - 1/sqrt(3x - 5))^4.["d"/"dx"(3x - 5)^(1/2) - "d"/"dx"(3x - 5)^(-1/2))]`
`= 5(sqrt(3x - 5) - 1/sqrt(3x - 5))^4. [1/2(3x - 5)^(-1/2)."d"/"dx"(3x - 5) - (-1/2)(3x - 5)^(-3/2)."d"/"dx"(3x - 5)]`
`= 5(sqrt(3x - 5) - 1/sqrt(3x - 5))^4. [1/(2sqrt(3x - 5)).(3 × 1 - 0) + 1/(2(3x - 5)^(3/2)).(3 × 1 - 0)]`
`= 5(sqrt(3x - 5) - 1/sqrt(3x - 5))^4. [3/(2(3x - 5)^(1/2)) +3/(2(3x - 5)^(3/2))]`
`= 5(sqrt(3x - 5) - 1/sqrt(3x - 5))^4. 3/2 [1/(3x - 5)^(1/2) + 1/(3x - 5)^(3/2)]`
`= 15/2 (sqrt(3x - 5) - 1/sqrt(3x - 5))^4. [(1 × (3x - 5))/((3x - 5)^(1/2) × (3x - 5)^1) + 1/(3x - 5)^(3/2)]`
`= 15/2 (sqrt(3x - 5) - 1/sqrt(3x - 5))^4. [(1 × (3x - 5))/((3x - 5)^(1/2 + 1)) + 1/(3x - 5)^(3/2)]`
`= 15/2 (sqrt(3x - 5) - 1/sqrt(3x - 5))^4. [(3x - 5)/((3x - 5)^(3/2)) + 1/(3x - 5)^(3/2)]`
`= 15/2 (sqrt(3x - 5) - 1/sqrt(3x - 5))^4. [(3x - 5 + 1)/((3x - 5)^(3/2))]`
`= (15(3x - 4))/(2(3x - 5)^(3/2))(sqrt(3x - 5) - 1/sqrt(3x - 5))^4`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`
If y = sin−1 (2x), find `("d"y)/(""d"x)`
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______
Derivative of (tanx)4 is ______
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______