मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Differentiate the following w.r.t. x : xxx+(logx)sinx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`

बेरीज

उत्तर

Let y = `x^(e^x) + (logx)^(sinx)`
Put u = `x^(e^x) and v = (log x)^(sinx)`
Then y = u + v
∴ `"dy"/"dx" = "du"/"dx" + "dv"/"dx"`             ...(1)
Take u = `x^(e^x)`
∴ log u = `logx^(e^x) = e^x.logx`
Differentiating both sides w.r.t. x, we get
`1/"u"."du"/"dx" = "d"/"dx"(e^x log x)`

= `e^x"d"/"dx"(logx) + logx "d"/"dx"(e^x)`

= `e^x.(1)/x + (logx)(e^x)`

∴ `"du"/"dx" = "u" [e^x/x + e^x.log x]`

= `e^x. x^(e^x)[1/x + logx]`         ...(2)
Also, v = (log x)sinx
∴ log v = log(log x)sinx = (sin x).(log log x)
Differentiating both sides w.r.t. x, we get
`1/"v"."dv"/"dx" = "d"/"dx"[(sin x).(loglogx)]`

= `(sinx)."d"/"dx"[(log log x) + (log logx)."d"/"dx"(sinx)]`

= `sinx xx 1/logx."d"/"dx"(logx) + (log log x).(cos x)`

∴ `"dv"/"dx" = "v"[sinx/logx xx (1)/x + (cos x)(log log x)]`

= `(logx)^(sinx)[sinx/(xlogx) + (cos x)(log log x)]`   ...(3)
From (1), (2) and (3), we get
`"dy"/"dx" - e^x.x^(e^x)[1/x + logx] + (logx)^(sinx) [sinx/(xlogx) + (cosx)(log log x)]`.

shaalaa.com
Differentiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`


Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`


Differentiate the following w.r.t.x:

`(x^3 - 5)^5/(x^3 + 3)^3`


Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 


Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`


Differentiate the following w.r.t.x:

y = (25)log5(secx) − (16)log4(tanx) 


Differentiate the following w.r.t. x : cot–1(4x)


Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`


Differentiate the following w.r.t. x :

`cos^-1(sqrt(1 - cos(x^2))/2)`


Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x : cos–1(3x – 4x3)


Differentiate the following w.r.t. x : `sin^-1  ((1 - 25x^2)/(1 + 25x^2))`


Differentiate the following w.r.t. x :

`sin^(−1) ((1 − x^3)/(1 + x^3))`


Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`


Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x: `x^(tan^(-1)x`


Differentiate the following w.r.t. x : (sin xx)


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3 


If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.


If f(x) is odd and differentiable, then f′(x) is


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


If y = cosec x0, then `"dy"/"dx"` = ______.


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81


Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×