हिंदी

Differentiate the following w.r.t. x : xxx+(logx)sinx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`

योग

उत्तर

Let y = `x^(e^x) + (logx)^(sinx)`
Put u = `x^(e^x) and v = (log x)^(sinx)`
Then y = u + v
∴ `"dy"/"dx" = "du"/"dx" + "dv"/"dx"`             ...(1)
Take u = `x^(e^x)`
∴ log u = `logx^(e^x) = e^x.logx`
Differentiating both sides w.r.t. x, we get
`1/"u"."du"/"dx" = "d"/"dx"(e^x log x)`

= `e^x"d"/"dx"(logx) + logx "d"/"dx"(e^x)`

= `e^x.(1)/x + (logx)(e^x)`

∴ `"du"/"dx" = "u" [e^x/x + e^x.log x]`

= `e^x. x^(e^x)[1/x + logx]`         ...(2)
Also, v = (log x)sinx
∴ log v = log(log x)sinx = (sin x).(log log x)
Differentiating both sides w.r.t. x, we get
`1/"v"."dv"/"dx" = "d"/"dx"[(sin x).(loglogx)]`

= `(sinx)."d"/"dx"[(log log x) + (log logx)."d"/"dx"(sinx)]`

= `sinx xx 1/logx."d"/"dx"(logx) + (log log x).(cos x)`

∴ `"dv"/"dx" = "v"[sinx/logx xx (1)/x + (cos x)(log log x)]`

= `(logx)^(sinx)[sinx/(xlogx) + (cos x)(log log x)]`   ...(3)
From (1), (2) and (3), we get
`"dy"/"dx" - e^x.x^(e^x)[1/x + logx] + (logx)^(sinx) [sinx/(xlogx) + (cosx)(log log x)]`.

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

संबंधित प्रश्न

Differentiate the following w.r.t.x:

`sqrt(x^2 + sqrt(x^2 + 1)`


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: cos2[log(x2 + 7)]


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x:

`sqrt(cosx) + sqrt(cossqrt(x)`


Differentiate the following w.r.t.x:

`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`


Differentiate the following w.r.t. x : tan–1(log x)


Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`


Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`


Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x : cos–1(3x – 4x3)


Differentiate the following w.r.t. x :

`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`


Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x :

`tan^-1((5 -x)/(6x^2 - 5x - 3))`


Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x:

`x^(x^x) + e^(x^x)`


Differentiate y = etanx w.r. to x


If y = sin−1 (2x), find `("d"y)/(""d"x)` 


If f(x) is odd and differentiable, then f′(x) is


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.


y = {x(x - 3)}2 increases for all values of x lying in the interval.


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______ 


The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.


If x2 + y2 - 2axy = 0, then `dy/dx` equals ______ 


Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.


If y = cosec x0, then `"dy"/"dx"` = ______.


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81


Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×