Advertisements
Advertisements
प्रश्न
If f(x) is odd and differentiable, then f′(x) is
उत्तर
If f(x) is odd and differentiable, then f′(x) is an even function.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t.x:
`log[a^(cosx)/((x^2 - 3)^3 logx)]`
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
If y = sin−1 (2x), find `("d"y)/(""d"x)`
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
Derivative of (tanx)4 is ______
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______