Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
उत्तर
Let y = `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
= `cos^-1[(e^x - 1/e^x)/(e^x + 1/e^x)]`
= `cos^-1((e^(2x) - 1)/(e^(2x) + 1))`
Put ex = tanθ.
Then θ = tan–1(ex)
∴ y = `cos^-1((tan^2θ - 1)/(tan^2θ + 1))`
= `cos^-1[-((1 - tan^2θ)/(1 + tan^2θ))]`
= cos–1(– cos2θ)
= cos–1[cos(π – 2θ)]
= π – 2θ
= π – 2tan–1(ex)
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[pi - 2tan^-1(e^x)]`
= `"d"/"dx"(pi) - 2"d"/"dx"[tan^-1(e^x)]`
= `0 - 2 xx (1)/(1 + (e^x)^2)."d"/"dx"(e^x)`
= `(-2)/(1 + e^(2x)) xx e^x`
= `-(2e^x)/(1 + e^(2x)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x:
log (sec 3x+ tan 3x)
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
If y = sin−1 (2x), find `("d"y)/(""d"x)`
Differentiate sin2 (sin−1(x2)) w.r. to x
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
y = {x(x - 3)}2 increases for all values of x lying in the interval.
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.