हिंदी

If y = sin-1[acosx-bsinxa2+b2], then find dydx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`

योग

उत्तर

y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`

= `sin^-1["a"/sqrt("a"^2 + "b"^2) cosx - "b"/sqrt("a"^2 + "b"^2) sinx]`

Put `"a"/sqrt("a"^2 + "b"^2)` = sin t and `"b"/sqrt("a"^2 + "b"^2)` = cos t

Also, sin2t + cos2t = `("a"^2)/("a"^2 + "b"^2) + ("b"^2)/("a"^2 + "b"^2)` = 1

and tan t = `"a"/"b"`

∴ t = `tan^-1("a"/"b")`

∴ y = sin–1(sin t cos x – cos t sin x)

= sin–1[sin(t – x)]

= t – x

= `tan^-1("a"/"b") - x`

Differentiating w.r.t. x, we get

`("d"y)/("d"x) = "d"/("d"x)[tan^-1("a"/"b") - x]`

= 0 – 1

= –1

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.1: Differentiation - Long Answers III

संबंधित प्रश्न

Differentiate the following w.r.t.x:

`sqrt(x^2 + sqrt(x^2 + 1)`


Differentiate the following w.r.t.x:

`sqrt(e^((3x + 2) +  5)`


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: cos2[log(x2 + 7)]


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`


Differentiate the following w.r.t.x:

(x2 + 4x + 1)3 + (x3− 5x − 2)4 


Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 


Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`


Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`


Differentiate the following w.r.t. x : cot–1(4x)


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`


Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`


Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`


Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x : (sin x)x 


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x:

`x^(x^x) + e^(x^x)`


Differentiate the following w.r.t. x :

(sin x)tanx + (cos x)cotx 


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


Solve the following : 

The values of f(x), g(x), f'(x) and g'(x) are given in the following table :

x f(x) g(x) f'(x) fg'(x)
– 1 3 2 – 3 4
2 2 – 1 – 5 – 4

Match the following :

A Group – Function B Group – Derivative
(A)`"d"/"dx"[f(g(x))]"at" x = -1` 1.  – 16
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` 2.     20
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` 3.  – 20
(D)`"d"/"dx"[g(g(x))]"at"x = 2` 5.     12

If y = sin−1 (2x), find `("d"y)/(""d"x)` 


If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)` 


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.


Derivative of (tanx)4 is ______ 


Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×