Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
उत्तर
Let y = `sqrt(x^2 + sqrt(x^2 + 1)`
Differentiating w.r.t. x,we get,
`"dy"/"dx" = "d"/"dx"(x^2 + sqrt(x^2 + 1))^(1/2)`
= `(1)/(2)(x^2 + sqrt(x^2 + 1))^(-1/2)."d"/"dx"(x^2 + sqrt(x^2 + 1))`
= `(1)/(2sqrt(x^2 + sqrt(x^2 + 1))).["d"/"dx"(x^2) + "d"/"dx"(sqrt(x^2 + 1))]`
= `(1)/(2sqrt(x^2 + sqrt(x^2 + 1))).[2x + 1/(2sqrt(x^2 + 1)). "d"/"dx"(x^2 + 1)]`
= `(1)/(2sqrt(x^2 + sqrt(x^2 + 1))).[2x + 1/(2sqrt(x^2 + 1)) 2x]`
= `(1)/(2sqrt(x^2 + sqrt(x^2 + 1))).[2x + x/(sqrt(x^2 + 1))]`
= `(1)/(2sqrt(x^2 + sqrt(x^2 + 1))).[(2xsqrt(x^2+1) + x)/(sqrt(x^2 + 1))]`
= `(x (2sqrt(x^2 + 1) + 1))/(2sqrt(x^2 +1).sqrt(x^2 + sqrt(x^2 + 1))`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x :
cos3[cos–1(x3)]
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
If y = cosec x0, then `"dy"/"dx"` = ______.
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`