हिंदी

Differentiate the following w.r.t.x: (x2+2)4x2+5 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`

योग

उत्तर

Let y = `(x^2 + 2)^4/(sqrt(x^2 + 5)`

Differentiating w.r.t.x, we get

`"dy"/"dx" = "d"/"dx"[(x^2 + 2)^4/(sqrt(x^2 + 5))]`

`"dy"/"dx" = (sqrt(x^2 + 5)."d"/"dx"(x^2 + 2)^4 - (x^2 + 2)^4."d"/"dx"(sqrt(x^2 + 5)))/(sqrt(x^2 + 5))^2`

`"dy"/"dx" = (sqrt(x^2 + 5) × 4(x^2 + 2)^3."d"/"dx"(x^2 + 2) - (x^2 + 2)^4 × 1/(2(sqrt(x^2 + 5)))."d"/"dx"(x^2 + 5))/(x^2 + 5)`

`"dy"/"dx" = (sqrt(x^2 + 5) × 4(x^2 + 2)^3.(2x + 0) - (x^2 + 2)^4/(2sqrt(x^2 + 5)) × (2x + 0))/(x^2 + 5)`

`"dy"/"dx" = (8x(x^2 + 5)(x^2 + 2)^3 - x(x^2 + 2)^4)/(x^2 + 5)^(3/2)`

`"dy"/"dx" = (x(x^2 + 2)^3[8(x^2 + 5) - (x^2 + 2)])/(x^2 + 5)^(3/2)`

`"dy"/"dx" = (x(x^2 + 2)^3(8x^2 + 40 - x^2 - 2))/(x^2 + 5)^(3/2)`

`"dy"/"dx" = (x(x^2 + 2)^3(7x^2 + 38))/(x^2 + 5)^(3/2)`.

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.1 [पृष्ठ १२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Differentiation
Exercise 1.1 | Q 3.20 | पृष्ठ १२

संबंधित प्रश्न

Differentiate the following w.r.t.x: cos(x2 + a2)


Differentiate the following w.r.t.x: `5^(sin^3x + 3)`


Differentiate the following w.r.t.x: cos2[log(x2 + 7)]


Differentiate the following w.r.t.x:

(x2 + 4x + 1)3 + (x3− 5x − 2)4 


Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`


Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`


Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`


Differentiate the following w.r.t. x : cos–1(1 –x2)


Differentiate the following w.r.t. x :

cos3[cos–1(x3)]


Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`


Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x :

`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`


Differentiate the following w.r.t. x : `sin^-1  ((1 - 25x^2)/(1 + 25x^2))`


Differentiate the following w.r.t. x :

`sin^(−1) ((1 − x^3)/(1 + x^3))`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20


If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.


Differentiate y = `sqrt(x^2 + 5)` w.r. to x


Differentiate y = etanx w.r. to x


If y = sin−1 (2x), find `("d"y)/(""d"x)` 


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


y = {x(x - 3)}2 increases for all values of x lying in the interval.


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______ 


Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81


Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.


If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`


Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×