हिंदी

Differentiate the following w.r.t.x: cos2[log(x2 + 7)] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t.x: cos2[log(x2 + 7)]

योग

उत्तर

Let y = cos2[log(x2 + 7)]
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"{cos[log(x^2 + 7)]}^2`

= `2cos[log(x^2 + 7)]."d"/"dx"{cos[log(x^2 + 7)]}`

= `2cos[log(x^2 + 7)].{-sin[log(x^2 + 7)]}."d"/"dx"[log(x^2 + 7)]`

= `-2sin[log(x^2 + 7)].cos[log(x^2 + 7)] xx (1)/(x^2 + 7)."d"/"dx"(x^2 + 7)`

= `-sin[2log(x^2 + 7)] xx (1)/(x^2 + 7).(2x + 0)`  ...[∵ 2sinx · cosx = sin2x]

= `(-2x.sin[2log(x^2 + 7)])/(x^2 + 7)`.

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.1 [पृष्ठ १२]

APPEARS IN

संबंधित प्रश्न

Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`


Differentiate the following w.r.t.x:

`sqrt(e^((3x + 2) +  5)`


Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`


Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 


Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`


Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]


Differentiate the following w.r.t. x : cos–1(1 –x2)


Differentiate the following w.r.t. x :

`cos^-1(sqrt(1 - cos(x^2))/2)`


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`


Differentiate the following w.r.t. x : `sin^-1  ((1 - 25x^2)/(1 + 25x^2))`


Differentiate the following w.r.t. x :

`sin^(−1) ((1 − x^3)/(1 + x^3))`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x :

`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`


Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`


Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x : (logx)x – (cos x)cotx 


Differentiate the following w.r.t. x :

(sin x)tanx + (cos x)cotx 


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`


Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x


If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.


y = {x(x - 3)}2 increases for all values of x lying in the interval.


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.


Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×