हिंदी

Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]

योग

उत्तर

Let y = log[tan3x.sin4x.(x2 + 7)7]
= log tan3x + log sin4x + log(x2 + 7)7
= 3log tanx + 4log sinx + 7log(x2 + 7)
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[3log tanx + 4 logsinx + 7 log(x^2 + 7)]`

= `3"d"/"dx"(log tan x) + 4"d"/"dx"(log sinx) + 7"d"/"dx"[log(x^2 + 7)]`

= `3 xx (1)/tanx ."d"/"dx"(tanx) + 4 xx (1)/sinx."d"/"dx"(sinx) + 7 xx (1)/(x^2 + 7)."d"/"dx"(x^2 + 7)`

= `3 xx (1)/tanx.sec^2x + 4 xx (1)/sinx.cosx + 7 xx (1)/(x^2 + 7).(2x + 0)`

= `3 xx "cosx"/"sinx" xx (1)/(cos^2x) + 4cotx + (14x)/(x^2 + 7)`

= `(6)/(2sinx cosx) + 4cot + (14x)/(x^2 + 7)`

= `(6)/(sin2x) + 4cotx + (14x)/(x^2 + 7)`

= `6"cosec"2x + 4cotx + (14x)/(x^2 + 7)`.

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.1 [पृष्ठ १२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Differentiation
Exercise 1.1 | Q 3.12 | पृष्ठ १२

संबंधित प्रश्न

Differentiate the following w.r.t.x:

`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`


Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`


Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`


Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)


Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`


Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`


Differentiate the following w.r.t. x : tan–1(log x)


Differentiate the following w.r.t. x : cosec–1 (e–x)


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x :

`cos^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x :

`sin^(−1) ((1 − x^3)/(1 + x^3))`


Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3 


If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.


If f(x) is odd and differentiable, then f′(x) is


If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)` 


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`


If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.


Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×