Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
उत्तर
Let y = `x/(sqrt(7 - 3x)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(x/sqrt(7 - 3x))`
= `(sqrt(7 - 3x)."d"/"dx"(x) - x"d"/"dx"(sqrt(7 - 3x)))/((sqrt(7 - 3x))^2`
= `(sqrt(7 - 3x) xx 1 - x xx (1)/(2sqrt(7 - 3x))."d"/"dx"(7 - 3x))/(7 - 3x)`
`= (sqrt(7 - 3x) - x/(2sqrt(7 - 3x))(0 - 3 xx 1))/(7 - 3x)`
`= (2(7 - 3x) + 3x)/(2(7 - 3x)^(3/2)`
`= (14 - 6x + 3x)/(2(7 - 3x)^(3/2)`
= `(14 - 3x)/(2(7 - 3x)^(3/2)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x:
log (sec 3x+ tan 3x)
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x :
`cos^-1(sqrt(1 - cos(x^2))/2)`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
If y = sin−1 (2x), find `("d"y)/(""d"x)`
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
If x2 + y2 - 2axy = 0, then `dy/dx` equals ______
If y = cosec x0, then `"dy"/"dx"` = ______.
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
If y = log (sec x + tan x), find `dy/dx`.