Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
उत्तर
Let y = `cot^-1((1 + 35x^2)/(2x))`
= `tan^-1((2x)/(1 + 35x^2)) ...[∵ cot^-1 x = tan^-1(1/x)]`
= `tan^-1[(7x - 5x)/(1 + (7x)(5x))]`
= tan–1(7x) – tan–1(5x)
Differentiating w.r.t.x, we get
`(dy)/dx = d/dx [tan^-1 (7x) - tan^-1(5x)]`
= `d/dx [tan^-1(7x)] - d/dx [tan^-1(5x)]`
= `1/(1 + (7x)^2) * d/dx (7x) - 1/(1 + (5x)^2) * d/dx (5x)`
= `1/(1 + 49x^2) xx 7 - 1/(1 + 25x^2) xx 5`
= `7/(1 + 49x^2) - 5/(1 + 25x^2)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
If f(x) is odd and differentiable, then f′(x) is
If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
y = {x(x - 3)}2 increases for all values of x lying in the interval.
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
If x2 + y2 - 2axy = 0, then `dy/dx` equals ______
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.
If y = cosec x0, then `"dy"/"dx"` = ______.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______