Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
उत्तर
Let y = (sin x)tanx + (cos x)cotx
Put u = (sin x)tanx and v = (cos x)cotx
Then y = u + v
∴ `"dy"/"dx" = "du"/"dx" + "dv"/"dx"` ...(1)
Take u = (sin x)tanx
∴ log u = log(sin x)tanx = (tan x).(log sinx)
Differentiating both sides w.r.t. x, we get
`1/u."du"/"dx" = "d"/"dx"[(tan x)(log sin x)]`
= `(tan x)."d"/"dx"(log sin x) + (log sinx)."d"/"dx"(tanx)`
= `(tanx)/(sin x)."d"/"dx"(sin x) + (log sinx)(sec^2x)`
= `((sinx)/(cosx))/(sinx).cosx + (sec^2x)(log sinx)`
= 1 + (sec2x)(log sinx)
∴ `"du"/"dx" = y[1 + (sec^2x)(log sinx)]`
= (sin x)tanx[1 + (sec2x)(log sinx)] ...(2)
Also, v = (cos x)cotx
∴ log v = log(cos x)cotx = (cot x).(log cosx)
Differentiating both sides w.r.t. x, we get
`1/v."dv"/"dx" = "d"/"dx"[(cot x).(log cos x)]`
= `(cot x)."d"/"dx"(log cos x) + (log cos x)."d"/"dx"(cotx)`
= `cot x xx 1/cosx."d"/"dx"(cosx) + (log cosx).(-"cosec"^2x)`
= `cotx xx 1/cosx xx (-sin x) - ("cosec"^2x)(log cosx)`
∴ `"dv"/"dx" = v[1/tanx xx (-tanx) - ("cosec"^2x)(log cosx)]`
= –(cos x)cotx [1 + (cosec2x)(log cosx)] ...(3)
From (1), (2) and (3), we get
`"dy"/"dx" = (sin x)^(tanx)[1 + (sec^2x)(log sin x)] - (cos x)^(cotx)[1 + ("cosec"^2x)(log cosx)]`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x :
`sin^-1(sqrt((1 + x^2)/2))`
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Differentiate y = etanx w.r. to x
If y = sin−1 (2x), find `("d"y)/(""d"x)`
Differentiate sin2 (sin−1(x2)) w.r. to x
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
If y = cosec x0, then `"dy"/"dx"` = ______.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.