हिंदी

Differentiate the following w.r.t. x : (sin x)tanx + (cos x)cotx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t. x :

(sin x)tanx + (cos x)cotx 

योग

उत्तर

Let y = (sin x)tanx + (cos x)cotx 
Put u = (sin x)tanx and v = (cos x)cotx
Then y = u + v
∴ `"dy"/"dx" = "du"/"dx" + "dv"/"dx"`       ...(1)
Take u = (sin x)tanx 
∴ log u = log(sin x)tanx = (tan x).(log sinx)
Differentiating both sides w.r.t. x, we get
`1/u."du"/"dx" = "d"/"dx"[(tan x)(log sin x)]`

= `(tan x)."d"/"dx"(log sin x) + (log sinx)."d"/"dx"(tanx)`

= `(tanx)/(sin x)."d"/"dx"(sin x) + (log sinx)(sec^2x)`

= `((sinx)/(cosx))/(sinx).cosx + (sec^2x)(log sinx)`
= 1 + (sec2x)(log sinx)
∴ `"du"/"dx" = y[1 + (sec^2x)(log sinx)]`

= (sin x)tanx[1 + (sec2x)(log sinx)]     ...(2)
Also, v = (cos x)cotx 
∴ log v = log(cos x)cotx = (cot x).(log cosx)
Differentiating both sides w.r.t. x, we get
`1/v."dv"/"dx" = "d"/"dx"[(cot x).(log cos x)]`

= `(cot x)."d"/"dx"(log cos x) + (log cos x)."d"/"dx"(cotx)`

= `cot x xx 1/cosx."d"/"dx"(cosx) + (log cosx).(-"cosec"^2x)`

= `cotx xx 1/cosx xx (-sin x) - ("cosec"^2x)(log cosx)`

∴ `"dv"/"dx" = v[1/tanx xx (-tanx) - ("cosec"^2x)(log cosx)]`
= –(cos x)cotx [1 + (cosec2x)(log cosx)]    ...(3)
From (1), (2) and (3), we get
`"dy"/"dx" = (sin x)^(tanx)[1 + (sec^2x)(log sin x)] - (cos x)^(cotx)[1 + ("cosec"^2x)(log cosx)]`.

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

संबंधित प्रश्न

Differentiate the following w.r.t.x:

`sqrt(x^2 + sqrt(x^2 + 1)`


Differentiate the following w.r.t.x: cos(x2 + a2)


Differentiate the following w.r.t.x:

`sqrt(e^((3x + 2) +  5)`


Differentiate the following w.r.t.x: log[cos(x3 – 5)]


Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`


Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`


Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`


Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]


Differentiate the following w.r.t. x : cot–1(x3)


Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`


Differentiate the following w.r.t. x :

`sin^-1(sqrt((1 + x^2)/2))`


Differentiate the following w.r.t. x : cos–1(1 –x2)


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`


Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`


Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x : `cos^-1((e^x -  e^(-x))/(e^x +  e^(-x)))`


Differentiate the following w.r.t. x :

`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`


Differentiate the following w.r.t. x :

`sin^(−1) ((1 − x^3)/(1 + x^3))`


Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`


Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x : (sin x)x 


Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Differentiate y = etanx w.r. to x


If y = sin−1 (2x), find `("d"y)/(""d"x)` 


Differentiate sin2 (sin−1(x2)) w.r. to x


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x


If y = cosec x0, then `"dy"/"dx"` = ______.


If x = p sin θ, y = q cos θ, then `dy/dx` = ______ 


Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×