Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
उत्तर
Let y = `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Then log y = `log[((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x)]`
= `log(x^2 + 2x + 2)^(3/2) - log(sqrt(x) + 3)^3(cosx)^x`
= `(3)/(2)log(x^2 + 2x + 2) - 3log(sqrt(x) + 3) - xlog(cosx)`
Differentiating both sides w.r.t. x, we get
`(1)/y."dy"/"dx" = (3)/(2)"d"/"dx"[log(x^2 + 2x + 2)] -3"d"/"dx"[log(sqrt(x) + 3)] - "d"/"dx"[xlog(cosx)]`
= `(3)/(2) xx (1)/(x^2 + 2x + 2)."d"/"dx"(x^2 + 2x + 2) -3 xx (1)/(sqrt(x) + 3)."d"/"dx"(sqrt(x) + 3) - {x"d"/"dx"[log(cosx)] + log(cosx)."d"/"dx"(x)}`
= `(3)/(2(x^2 + 2x + 2)) xx (2x + 2 xx 1 + 0) - (3)/(sqrt(x) + 3) xx (1/(2sqrt(x)) + 0) - {x xx (1)/cosx."d"/"dx"(cosx) + log(cosx) xx 1}`
= `(3(2x + 2))/(2(x^2 + 2x + 2)) - (3)/(2sqrt(x)(sqrt(x) + 3)) - {x xx (1)/cosx.(-sinx) + log(cosx)}`
∴ `"dy"/"dx" = y[(3(x + 1))/(x^2 + 2x + 2) - (3)/(2sqrt(x)(sqrt(x) + 3)) + xtanx - log(cosx)]`
= `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x)[(3(x + 1))/(x^2 + 2x + 2) - (3)/(2sqrt(x)(sqrt(x) + 3)) + xtanx - log(cosx)]`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
Differentiate sin2 (sin−1(x2)) w.r. to x
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______
y = {x(x - 3)}2 increases for all values of x lying in the interval.
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.