हिंदी

Differentiate the following w.r.t. x : at[(tanx)tanx]tanxat x=π4 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`

योग

उत्तर

Let y = `[(tanx)^(tanx)]^(tanx)`
∴ log y = `log[(tanx)^(tanx)]tanx`
= tanx. log(tanx)tanx
= tanx. tanx log(tan x)
= (tanx)2. log(tan x)
Differentiating both sides w.r.t. x, we get
`1/y."dy"/"dx" = "d"/"dx"[tanx)^2.log(tanx)]`

= `(tanx)^2."d"/"dx"(log tanx) + (log tanx)."d"/"dx"(tanx)^2`

= `(tanx)^2. xx 1/tanx."d"/"dx"(tanx) + (log tanx) xx 2tanx."d"/"dx"(tanx)`

= `(tanx)^2 xx 1/tanx.sec^2x + (log tanx) xx 2 tanxsec^2x`

∴ `"dy"/"dx" = y[(tanx)(sec^2x) + (logtanx)(2tanxsec^2x)]`

= [(tanx)tanx]tanx.(tanxsec2x)[1 + 2logtanx]

If x = `pi/(4)`, then

`"dy"/"dx" = [(tan pi/4)^(tan  pi/4)]^(tan  pi/4)(tan  pi/4 sec^2  pi/4)[1 + 2log tan  pi/4]`
= `[(1)^1]^1.[1(sqrt(2))^2][1 + 2log1]`
= 1 x 2 x 1                  ...[∵ log 1 = 0]
= 2.

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

संबंधित प्रश्न

Differentiate the following w.r.t.x:

`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`


Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`


Differentiate the following w.r.t.x:

log (sec 3x+ tan 3x)


Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`


Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x : cot–1(x3)


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`


Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`


Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`


Differentiate the following w.r.t. x: `x^(tan^(-1)x`


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


Differentiate y = `sqrt(x^2 + 5)` w.r. to x


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x


If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`


If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.


If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______ 


If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______


If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______ 


If y = cosec x0, then `"dy"/"dx"` = ______.


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81


If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×