Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`
उत्तर
`sqrt(x) + sqrt(y) = sqrt(a)`
Differentiating both sides w.r.t. x, we get
`(1)/(2sqrt(x)) + (1)/(2sqrt(y))."dy"/"dx"` = 0
∴ `(1)/(2sqrt(y))"dy"/"dx" = -(1)/(2sqrt(x)`
∴ `"dy"/"dx" = -sqrt(y/x`.
APPEARS IN
संबंधित प्रश्न
if `y = tan^2(log x^3)`, find `(dy)/(dx)`
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if xey + yex = 1
Find `"dy"/"dx"` if cos (xy) = x + y
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find the second order derivatives of the following : e2x . tan x
Find the second order derivatives of the following : e4x. cos 5x
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
The derivative of f(x) = ax, where a is constant is x.ax-1.
State whether the following is True or False:
The derivative of polynomial is polynomial.
`d/dx(10^x) = x*10^(x - 1)`
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
If y = x10, then `("d"y)/("d"x)` is ______
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
If y = x2, then `("d"^2y)/("d"x^2)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`
Solution: Given,
y = (6x4 – 5x3 + 2x + 3)6
Let u = `[6x^4 - 5x^3 + square + 3]`
∴ y = `"u"^square`
∴ `("d"y)/"du"` = 6u6–1
∴ `("d"y)/"du"` = 6( )5
and `"du"/("d"x) = 24x^3 - 15(square) + 2`
By chain rule,
`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`
∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`
If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b)) tan x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______
If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
Derivative of ex sin x w.r.t. e-x cos x is ______.
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
Differentiate `sqrt(tansqrt(x))` w.r.t. x
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
y = cos (sin x)
y = sin (ax+ b)
y = `sec (tan sqrt(x))`
If y = 2x2 + a2 + 22 then `dy/dx` = ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`
Find `dy/dx` if, `y = e^(5x^2 - 2x + 4)`.