Advertisements
Advertisements
प्रश्न
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
विकल्प
`(-x)/(cos"a")`
`(-x^2)/(y^2)`
`(y^2)/(x^2)`
`sin"a"/y`
उत्तर
`(-x^2)/(y^2)`
APPEARS IN
संबंधित प्रश्न
If y = eax. cos bx, then prove that
`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"` if xey + yex = 1
Find `"dy"/"dx"` if cos (xy) = x + y
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find the second order derivatives of the following : e2x . tan x
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
`d/dx(10^x) = x*10^(x - 1)`
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
If y = x10, then `("d"y)/("d"x)` is ______
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
If y = x2, then `("d"^2y)/("d"x^2)` is ______
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`
Solution: Given,
y = (6x4 – 5x3 + 2x + 3)6
Let u = `[6x^4 - 5x^3 + square + 3]`
∴ y = `"u"^square`
∴ `("d"y)/"du"` = 6u6–1
∴ `("d"y)/"du"` = 6( )5
and `"du"/("d"x) = 24x^3 - 15(square) + 2`
By chain rule,
`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`
∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
If f(x) = |cos x|, find f'`((3pi)/4)`
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
If y = log (cos ex), then `"dy"/"dx"` is:
y = sin (ax+ b)
y = `2sqrt(cotx^2)`
y = `cos sqrt(x)`
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
The differential equation of (x - a)2 + y2 = a2 is ______
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that
`dy/dx = dy/(du) xx (du)/dx`
Hence find `dy/dx` if y = log(x2 + 5)
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.
Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`