Advertisements
Advertisements
प्रश्न
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
उत्तर
ax2 + 2hxy + by2 = 0
Differentiating w.r.t. 'x',
`2ax + 2h (x (dy)/(dx) + y.1) + 2by (dy)/(dx)` = 0
∴ `(2hx + 2by) (dy)/(dx) = - (2ax + 2hy)`
∴ `(dy)/(dx) = (-2(ax + hy))/(2(hx + by))`
∴ `(dy)/(dx) = (-(ax + hy))/((hx + by))` ......(1)
Now, ax2 + 2hxy + by2 = 0
⇒ ax2 + hxy + hxy + by2 = 0
⇒ x(ax + hy) + y(hx + by) = 0
⇒ x(ax + hy) = – y(hx + by)
⇒ `(ax ++ hy)/(hx + by) = (-y)/x` ......(2)
Substituting (2) in (1),
`(dy)/(dx) = - ((-y)/x) = y/x` ......(3)
Again, differentiating w.r.t., x,
`(d^2y)/(dx^2) = (x . (dy)/(dx) - y.1)/x^2`
= `(x . y/x - y)/x^2` ......[From (3)]
⇒ `(d^2y)/(dx^2) = (y - y)/x^2` = 0.
APPEARS IN
संबंधित प्रश्न
If y = log (cos ex) then find `"dy"/"dx".`
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
y = `sec (tan sqrt(x))`
y = `cos sqrt(x)`
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
The differential equation of (x - a)2 + y2 = a2 is ______
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
If x = Φ(t) is a differentiable function of t, then prove that:
`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
Hence, find `int(logx)^n/x dx`.
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Find `dy/dx` if, `y = e^(5x^2 - 2x + 4)`.