Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
विकल्प
`("x"^2 - 1)/(2"x"^2sqrt("x"^2 + 1))`
`(1 - "x"^2)/(2"x"^2("x"^2 + 1))`
`("x"^2 - 1)/("2x"sqrt"x"sqrt("x"^2 + 1))`
`(1 - "x"^2)/("2x"sqrt"x"sqrt("x"^2 + 1))`
उत्तर
`("x"^2 - 1)/("2x"sqrt"x"sqrt("x"^2 + 1))`
Explanation:
y = `sqrt("x" + 1/"x")`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = 1/(2sqrt("x" + 1/"x")) * "d"/"dx" ("x" + 1/"x")`
`= 1/(2sqrt(("x"^2 + 1)/"x")) * (1 - 1/"x"^2)`
`= sqrt"x"/(2sqrt("x"^2 + 1)) * (("x"^2 - 1)/"x"^2)`
`= ("x"^2 - 1)/("2x"sqrt"x"sqrt("x"^2 + 1))`
APPEARS IN
संबंधित प्रश्न
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______
Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
If y = x10, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`
Solution: Given,
y = (6x4 – 5x3 + 2x + 3)6
Let u = `[6x^4 - 5x^3 + square + 3]`
∴ y = `"u"^square`
∴ `("d"y)/"du"` = 6u6–1
∴ `("d"y)/"du"` = 6( )5
and `"du"/("d"x) = 24x^3 - 15(square) + 2`
By chain rule,
`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`
∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
If x = Φ(t) is a differentiable function of t, then prove that:
`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
Hence, find `int(logx)^n/x dx`.
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`