हिंदी

Find dydxdydx if eex-y=xy - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`

योग

उत्तर

`e^(e^(x - y)) = x/y`

Taking log on both side

`log e^(e^((x - y))) = log  (x/y)`

∴ `e^((x - y)) log e = log x - log y`

∴ ex–y = log x – log y ....[∵ log e = 1]
Differentiating both sides w.r.t. x, we get
`e^(x - y)."d"/"dx"(x - y) = (1)/x - (1)/y"dy"/"dx"`

∴ `e^(x - y)(1 - "dy"/"dx") = (1)/x - (1)/y"dy"/"dx"`

∴ `e^(x - y) - e^(x - y)"dy"/"dx" = (1)/x - (1)/y"dy"/"dx"`

∴ `(1/y - e^(x - y))"dy"/"dx" = (1)/x -  e^(x - y)`

`((1 - ye^(x - y))/y)"dy"/"dx" = (1 - xe^(x - y))/x`

∴ `"dy"/"dx" = (y(1 - xe^(x - y)))/((x(1 - ye^(x - y))`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Differentiation
Exercise 1.3 | Q 3.09 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0


if `y = tan^2(log x^3)`, find `(dy)/(dx)`


Solve the following differential equation: 
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1


Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81


Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`


Find `"dy"/"dx"` if xey + yex = 1


Find the second order derivatives of the following : xx 


Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`


Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 


Find `"dy"/"dx"` if, y = log(log x)


Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`


Choose the correct alternative.

If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`


Fill in the Blank

If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________


If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`


State whether the following is True or False:

The derivative of polynomial is polynomial.


`d/dx(10^x) = x*10^(x - 1)`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`


Find `"dy"/"dx"`, if y = xx.


Differentiate `"e"^("4x" + 5)` with respect to 104x.


If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______


Choose the correct alternative:

If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?


If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______


If y = x2, then `("d"^2y)/("d"x^2)` is ______


State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a


State whether the following statement is True or False:

If y = ex, then `("d"^2y)/("d"x^2)` = ex 


Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10 


Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`


y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`

Solution: Given,

y = (6x4 – 5x3 + 2x + 3)6 

Let u = `[6x^4 - 5x^3 + square + 3]`

∴ y = `"u"^square`

∴ `("d"y)/"du"` = 6u6–1

∴ `("d"y)/"du"` = 6(  )5 

and `"du"/("d"x) = 24x^3 - 15(square) + 2`

By chain rule,

`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`

∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`


Derivative of ex sin x w.r.t. e-x cos x is ______.


If y = (sin x2)2,  then `("d"y)/("d"x)` is equal to ______.


Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`


If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`


If f(x) = |cos x – sinx|, find `"f'"(pi/6)`


If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.


If y = log (cos ex), then `"dy"/"dx"` is:


Differentiate the function from over no 15 to 20 sin (x2 + 5)


y = cos (sin x)


y = sin (ax+ b)


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`


If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find the rate of change of demand (x) of acommodity with respect to its price (y) if

`y = 12 + 10x + 25x^2`


Find `dy/dx` if ,

`x= e^(3t) , y = e^(4t+5)`


If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).


Solve the following:

If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`


If x = Φ(t) is a differentiable function of t, then prove that:

`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`

Hence, find `int(logx)^n/x dx`.


If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.


If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.


If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.


If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`. 


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


Solve the following:

If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Solve the following:

If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"` 


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`


Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`


Find `dy/dx` if, `y = e^(5x^2 - 2x +  4)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×