Advertisements
Advertisements
प्रश्न
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
उत्तर
We have x = sec3θ and y = a tan3θ
Differentiating w.r.t. θ , we get
`("d"x)/("d"theta) = 3"a" sec^2 theta "d"/("d"theta) (sec theta)`
= 3a sec3θ tanθ
And `("d"y)/("d"theta) = 3"a" tan^2 theta "d"/("d"theta) (tan theta)`
= 3a tan3θ sec2θ.
Thus `("d"y)/("d"x) = (("d"y)/("d"theta))/(("d"x)/("d"theta))`
= `tantheta/sectheta`
= sin θ
Hence, `(("d"y)/("d"x))_("at" theta = pi/3) = sin pi/3 = sqrt(3)/2`.
APPEARS IN
संबंधित प्रश्न
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
The derivative of f(x) = ax, where a is constant is x.ax-1.
`d/dx(10^x) = x*10^(x - 1)`
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
Differentiate `"e"^("4x" + 5)` with respect to 104x.
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
Derivative of ex sin x w.r.t. e-x cos x is ______.
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
If x = Φ(t) is a differentiable function of t, then prove that:
`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
Hence, find `int(logx)^n/x dx`.
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`