Advertisements
Advertisements
प्रश्न
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
उत्तर
We have x = sec3θ and y = a tan3θ
Differentiating w.r.t. θ , we get
`("d"x)/("d"theta) = 3"a" sec^2 theta "d"/("d"theta) (sec theta)`
= 3a sec3θ tanθ
And `("d"y)/("d"theta) = 3"a" tan^2 theta "d"/("d"theta) (tan theta)`
= 3a tan3θ sec2θ.
Thus `("d"y)/("d"x) = (("d"y)/("d"theta))/(("d"x)/("d"theta))`
= `tantheta/sectheta`
= sin θ
Hence, `(("d"y)/("d"x))_("at" theta = pi/3) = sin pi/3 = sqrt(3)/2`.
APPEARS IN
संबंधित प्रश्न
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find the second order derivatives of the following : e4x. cos 5x
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
If y = x10, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
If f(x) = |cos x|, find f'`((3pi)/4)`
If y = log (cos ex), then `"dy"/"dx"` is:
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = `cos sqrt(x)`
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`