Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
उत्तर
y = log(10x4 + 5x3 - 3x2 + 2)
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"[log (10"x"^4 + 5"x"^3 - 3"x"^2 + 2)]`
`= 1/(10"x"^4 + 5"x"^3 - 3"x"^2 + 2) * "d"/"dx" (10"x"^4 + 5"x"^3 - 3"x"^2 + 2)`
`= 1/(10"x"^4 + 5"x"^3 - 3"x"^2 + 2) * [10(4"x"^3) + 5(3"x"^2) - 3(2"x") + 0]`
∴ `"dy"/"dx" = (40"x"^3 + 15"x"^2 - 6"x")/(10"x"^4 + 5"x"^3 - 3"x"^2 + 2)`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"` if ex+y = cos(x – y)
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______
Derivative of ex sin x w.r.t. e-x cos x is ______.
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = `sec (tan sqrt(x))`
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.
If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that
`dy/dx = dy/(du) xx (du)/dx`
Hence find `dy/dx` if y = log(x2 + 5)
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`