Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
उत्तर
y = log(ax2 + bx + c)
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"` [log(ax2 + bx + c)]
`= 1/("ax"^2 + "bx" + "c") * "d"/"dx" ("ax"^2 + "bx" + "c")`
`= 1/("ax"^2 + "bx" + "c") * ["a"("2x") + "b" + 0]`
∴ `"dy"/"dx" = ("2ax" + "b")/("ax"^2 + "bx" + "c")`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"` if xey + yex = 1
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
If y = x2, then `("d"^2y)/("d"x^2)` is ______
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`