मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If y = cos−1 [sin (4x)], find dydx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`

बेरीज

उत्तर

y = cos−1 [sin (4x)]

= `cos^-1 [cos(pi/2 - 4^x)]`

= y = `pi/2 - 4^x`

Differentiating w.r.t. x, we get

`("d"y)/("d"x) = "d"/("d"x)(pi/2 - 4^x)`

= 0 – 4x log 4

= – 4x log 4

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.1: Differentiation - Short Answers I

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0


If y = log (cos ex) then find `"dy"/"dx".`


Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`


Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`


Find `dy/dx if x + sqrt(xy) + y = 1`


Find `"dy"/"dx"` if cos (xy) = x + y


Find the second order derivatives of the following : e2x . tan x


Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 


Find `"dy"/"dx"` if, y = log(log x)


Find `"dy"/"dx"` if, y = log(ax2 + bx + c) 


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`


Fill in the Blank

If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________


If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`


State whether the following is True or False:

The derivative of polynomial is polynomial.


`d/dx(10^x) = x*10^(x - 1)`


Solve the following:

If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"` 


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x  – x2.


If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.


If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______


If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0


Choose the correct alternative:

If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?


Choose the correct alternative:

If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?


If y = x2, then `("d"^2y)/("d"x^2)` is ______


Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10 


If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______ 


If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______ 


Derivative of ex sin x w.r.t. e-x cos x is ______.


Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]


Differentiate `sqrt(tansqrt(x))` w.r.t. x


If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`


If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.


y = sin (ax+ b)


y = `sec (tan sqrt(x))`


Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.


If y = 2x2 + a2 + 22 then `dy/dx` = ______.


If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Solve the following:

If y = `root5 ((3x^2 + 8x + 5)^4 ,)  "find"  "dy"/ "dx"`


Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`


If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


The differential equation of (x - a)2 + y2 = a2 is ______ 


If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find the rate of change of demand (x) of acommodity with respect to its price (y) if

`y = 12 + 10x + 25x^2`


lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:

`dy/dx = dy/(du) xx (du)/dx`

Hence, find `d/dx[log(x^5 + 4)]`.


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`


If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`. 


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`


Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`


Solve the following:

If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`


Solve the following:

If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"` 


Solve the following.

If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`


If `y = root{5}{(3x^2 + 8x + 5)^4}, "find"  dy/dx`.


If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`


Find `dy/dx` if, `y = e^(5x^2 - 2x +  4)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×