मराठी

If y = log (cos ex) then find "dy"/"dx". - Mathematics

Advertisements
Advertisements

प्रश्न

If y = log (cos ex) then find `"dy"/"dx".`

बेरीज

उत्तर

Let y = log(cos ex)

By using the chain rule, we obtain

`"dy"/"dx" = "d"/"dx"["log"(cos"e"^"x")]`

`= 1/cos"e"^"x"  . "d"/"dx"(cos"e"^"x")`

` = 1/(cos"e"^"x") . (-sin"e"^"x") . "d"/"dx" ("e"^"x")`

` = (-sin"e"^"x")/(cos"e"^"x") . "e"^"x"`

`= -"e"^"x"  tan"e"^"x", "e"^"x" ≠ (2"n"+1)pi/2, "n"∈ "N"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/4/3

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find `"dy"/"dx"` if ex+y = cos(x – y)


Find the second order derivatives of the following : e2x . tan x


Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`


Choose the correct alternative.

If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =


Solve the following:

If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"` 


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x  – x2.


Differentiate `"e"^("4x" + 5)` with respect to 104x.


Choose the correct alternative:

If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?


If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______


State whether the following statement is True or False:

If y = ex, then `("d"^2y)/("d"x^2)` = ex 


Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10 


If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b))  tan  x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______ 


If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______ 


If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.


Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]


Differentiate `sqrt(tansqrt(x))` w.r.t. x


If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)` 


y = `sec (tan sqrt(x))`


Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.


Let f(x) = x | x | and g(x) = sin x

Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.

Statement II gof is twice differentiable at x = 0.


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`


Find the rate of change of demand (x) of acommodity with respect to its price (y) if

`y = 12 + 10x + 25x^2`


If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.


Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`


Solve the following:

If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`


If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`


If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×