मराठी

A is a square matrix with ∣A∣ = 4. then find the value of ∣A. (adj A)∣. - Mathematics

Advertisements
Advertisements

प्रश्न

A is a square matrix with ∣A∣ = 4. then find the value of ∣A. (adj A)∣.

बेरीज

उत्तर

We know |A adj A| = |A|n.

|A| = 4

|A (adj A)| = 4n  ........(where nn is the order of matrix A)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/4/3

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find λ and μ if

`(hati+3hatj+9k)xx(3hati-lambdahatj+muk)=0`


If A and B are square matrices of the same order such that |A| = 3 and AB = I, then write the value of |B|.


If A is a square matrix of order 3 with determinant 4, then write the value of |−A|.


If A is a square matrix such that |A| = 2, write the value of |A AT|.


If A is a square matrix of order n × n such that  \[|A| = \lambda\] , then write the value of |−A|.


If A and B are square matrices of order 3 such that |A| = − 1, |B| = 3, then find the value of |3 AB|.


If A is a square matrix such that A (adj A)  5I, where I denotes the identity matrix of the same order. Then, find the value of |A|.


If A is a square matrix of order 3 such that |A| = 5, write the value of |adj A|.


If A is a square matrix of order 3 such that |adj A| = 64, find |A|.


If A is a non-singular square matrix such that |A| = 10, find |A−1|.


If A is a non-singular square matrix such that \[A^{- 1} = \begin{bmatrix}5 & 3 \\ - 2 & - 1\end{bmatrix}\] , then find \[\left( A^T \right)^{- 1} .\]


If A is a square matrix of order 3 such that |A| = 2, then write the value of adj (adj A).


If A is a square matrix of order 3 such that |A| = 3, then write the value of adj (adj A). 


If A is a square matrix of order 3 such that adj (2A) = k adj (A), then write the value of k.


If A is a square matrix such that \[A \left( adj A \right) = \begin{bmatrix}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{bmatrix}\] , then write the value of |adj A|.

 

Let A be a square matrix such that \[A^2 - A + I = O\], then write \[A^{- 1}\]  interms of A.


If A and B are square matrices such that B = − A−1 BA, then (A + B)2 = ________ .


If A is a square matrix such that A2 = I, then A1 is equal to _______ .


Let A = `[(1, "a" ("b + c"), "bc"),(1, "b" ("c + a"), "ca"),(1, "c" ("a + b"), "ab")],` then Det. A is ____________.


If A and B are square matrices of order 3, then ____________.


Given that A is a square matrix of order 3 and |A| = −4, then |adj A| is equal to:


Given that A = [aij] is a square matrix of order 3 × 3 and |A| = −7, then the value of `sum_("i" = 1)^3 "a"_("i"2)"A"_("i"2)`, where Aij denotes the cofactor of element aij is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×