मराठी

Find λ and μ if (i+3j+9k)×(3i−λj+μk)= - Mathematics

Advertisements
Advertisements

प्रश्न

Find λ and μ if

`(hati+3hatj+9k)xx(3hati-lambdahatj+muk)=0`

उत्तर

`(hati+3hatj+9k)xx(3hati-lambdahatj+muk)=0`

`|(hati,hatj,hatk),(1,3,9),(3,-lambda,mu)|=vec0`

`hati(3mu+9lambda)-hatj(mu-27)+hatk(-lambda-9)=vec0`

3μ + 9λ = 0 ...(1)

27 - μ = 0 ...(2)

-λ-9 = 0 ...(3)

by eqn (2) & (3)  μ = 27 and  λ = -9

So  μ = 27, λ = -9

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) All India Set 1 N

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If A and B are square matrices of the same order such that |A| = 3 and AB = I, then write the value of |B|.


If A is a square matrix of order 3 with determinant 4, then write the value of |−A|.


If A is a square matrix such that |A| = 2, write the value of |A AT|.


If A is a square matrix of order n × n such that  \[|A| = \lambda\] , then write the value of |−A|.


If A and B are square matrices of order 3 such that |A| = − 1, |B| = 3, then find the value of |3 AB|.


If A and B are square matrices of order 2, then det (A + B) = 0 is possible only when





If A is a square matrix such that A (adj A)  5I, where I denotes the identity matrix of the same order. Then, find the value of |A|.


If A is a square matrix of order 3 such that |A| = 5, write the value of |adj A|.


If A is a non-singular square matrix such that |A| = 10, find |A−1|.


If A is a non-singular square matrix such that \[A^{- 1} = \begin{bmatrix}5 & 3 \\ - 2 & - 1\end{bmatrix}\] , then find \[\left( A^T \right)^{- 1} .\]


If A is a square matrix of order 3 such that |A| = 2, then write the value of adj (adj A).


If A is a square matrix of order 3 such that |A| = 3, then write the value of adj (adj A). 


Let A be a 3 × 3 square matrix, such that A (adj A) = 2 I, where I is the identity matrix. Write the value of |adj A|.


If A is a square matrix such that \[A \left( adj A \right) = \begin{bmatrix}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{bmatrix}\] , then write the value of |adj A|.

 

If A is a square matrix such that A2 = I, then A1 is equal to _______ .


A is a square matrix with ∣A∣ = 4. then find the value of ∣A. (adj A)∣.


If A and B are square matrices of order 3, then ____________.


Given that A is a square matrix of order 3 and |A| = −4, then |adj A| is equal to:


Given that A = [aij] is a square matrix of order 3 × 3 and |A| = −7, then the value of `sum_("i" = 1)^3 "a"_("i"2)"A"_("i"2)`, where Aij denotes the cofactor of element aij is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×