Advertisements
Advertisements
प्रश्न
If y = log (cos ex) then find `"dy"/"dx".`
उत्तर
Let y = log(cos ex)
By using the chain rule, we obtain
`"dy"/"dx" = "d"/"dx"["log"(cos"e"^"x")]`
`= 1/cos"e"^"x" . "d"/"dx"(cos"e"^"x")`
` = 1/(cos"e"^"x") . (-sin"e"^"x") . "d"/"dx" ("e"^"x")`
` = (-sin"e"^"x")/(cos"e"^"x") . "e"^"x"`
`= -"e"^"x" tan"e"^"x", "e"^"x" ≠ (2"n"+1)pi/2, "n"∈ "N"`
APPEARS IN
संबंधित प्रश्न
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `"dy"/"dx"` if cos (xy) = x + y
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find the second order derivatives of the following : e2x . tan x
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
State whether the following is True or False:
The derivative of polynomial is polynomial.
Differentiate `"e"^("4x" + 5)` with respect to 104x.
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
y = cos (sin x)
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
If y = 2x2 + a2 + 22 then `dy/dx` = ______.
Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.