Advertisements
Advertisements
प्रश्न
Differentiate `"e"^("4x" + 5)` with respect to 104x.
उत्तर
Let u = `"e"^(("4x" + 5))` and v = 104x.
u = `"e"^(("4x" + 5))`
Differentiating both sides w.r.t.x, we get
`"du"/"dx" = "e"^(("4x" + 5)) * "d"/"dx" (4"x" + 5)`
`= "e"^(("4x" + 5)) * (4 + 0)`
∴ `"du"/"dx" = 4 * "e"^(("4x" + 5)) *`
v = 104x
Differentiating both sides w.r.t.x, we get
`"dv"/"dx" = 10^"4x" * log 10 * "d"/"dx" ("4x")`
∴ `"dv"/"dx" = 10^"4x" * (log 10) (4)`
∴ `"du"/"dv" = ("du"/"dx")/("dv"/"dx") = (4 * "e"^(("4x" + 5)))/(10^"4x" * (log 10)(4))`
∴ `"du"/"dv" = ("e"^(("4x" + 5)))/(10^"4x" * (log 10)`
APPEARS IN
संबंधित प्रश्न
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
If y = x2, then `("d"^2y)/("d"x^2)` is ______
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
If f(x) = |cos x – sinx|, find `"f'"(pi/6)`
y = cos (sin x)
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
If x = Φ(t) is a differentiable function of t, then prove that:
`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
Hence, find `int(logx)^n/x dx`.
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`