Advertisements
Advertisements
प्रश्न
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
उत्तर
We know that f(x) = `1/(x - 1)` is discontinuous at x = 1
Now, for x ≠ 1,
f(f(x)) = `"f"(1/(x - 1))`
= `1/(1/(x - 1) - 1)`
= `(x - 1)/(2 - x)`.
Which is discontinuous at x = 2.
Hence, the points of discontinuity are x = 1 and x = 2.
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
If y = x2, then `("d"^2y)/("d"x^2)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
`"d"/("d"x) [sin(1 - x^2)]^2` = ______.
If f(x) = |cos x – sinx|, find `"f'"(pi/6)`
y = sin (ax+ b)
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.