हिंदी

Find dydxdydx if x2y2-tan-1(x2+y2)=cot-1(x2+y2) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`

योग

उत्तर

`x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`

∴ `x^2y^2 = tan^-1(sqrt(x^2 + y^2)) + cot^-1(sqrt(x^2 + y^2))`

∴ `x^2y^2 = π/2         ...[∵ tan^-1 x + cot^-1 x = π/2]`

Differentiating both sides w.r.t. x, we get,

`x^2.d/dx(y^2) + y^2.d/dx(x^2) = 0`

∴ `x^2 × 2y dy/dx + y^2 × 2x = 0`

∴ `2x^2y dy/dx = – 2xy^2`

∴ `x dy/dx = – y`

∴ `dy/dx = -y/x`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Differentiation
Exercise 1.3 | Q 3.05 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0


Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`


Solve the following differential equation: 
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1


If y = log (cos ex) then find `"dy"/"dx".`


Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`


Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81


Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`


Find the second order derivatives of the following : e2x . tan x


Find the second order derivatives of the following : e4x. cos 5x


Find `"dy"/"dx"` if, y = log(log x)


Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)


Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`


Choose the correct alternative.

If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =


If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`


The derivative of f(x) = ax, where a is constant is x.ax-1.


State whether the following is True or False:

The derivative of polynomial is polynomial.


Find `"dy"/"dx"`, if y = `2^("x"^"x")`.


Differentiate `"e"^("4x" + 5)` with respect to 104x.


If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


Choose the correct alternative:

If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?


Choose the correct alternative:

If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?


State whether the following statement is True or False:

If y = ex, then `("d"y)/("d"x)` = ex 


State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a


Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10 


Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`


Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`


y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`

Solution: Given,

y = (6x4 – 5x3 + 2x + 3)6 

Let u = `[6x^4 - 5x^3 + square + 3]`

∴ y = `"u"^square`

∴ `("d"y)/"du"` = 6u6–1

∴ `("d"y)/"du"` = 6(  )5 

and `"du"/("d"x) = 24x^3 - 15(square) + 2`

By chain rule,

`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`

∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`


If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______ 


If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______ 


If y = (sin x2)2,  then `("d"y)/("d"x)` is equal to ______.


Differentiate `sqrt(tansqrt(x))` w.r.t. x


If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`


If f(x) = |cos x|, find f'`((3pi)/4)`


If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.


y = `sec (tan sqrt(x))`


y = `cos sqrt(x)`


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.


If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.


Let f(x) = x | x | and g(x) = sin x

Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.

Statement II gof is twice differentiable at x = 0.


Solve the following:

If y = `root5 ((3x^2 + 8x + 5)^4 ,)  "find"  "dy"/ "dx"`


Solve the following:

If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`


If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


If x = Φ(t) is a differentiable function of t, then prove that:

`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`

Hence, find `int(logx)^n/x dx`.


If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`. 


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Solve the following.

If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`


If `y = root{5}{(3x^2 + 8x + 5)^4}, "find"  dy/dx`.


Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`


If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`


If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×