Advertisements
Advertisements
प्रश्न
y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`
Solution: Given,
y = (6x4 – 5x3 + 2x + 3)6
Let u = `[6x^4 - 5x^3 + square + 3]`
∴ y = `"u"^square`
∴ `("d"y)/"du"` = 6u6–1
∴ `("d"y)/"du"` = 6( )5
and `"du"/("d"x) = 24x^3 - 15(square) + 2`
By chain rule,
`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`
∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`
उत्तर
Given,
y = (6x4 – 5x3 + 2x + 3)6
Let u = [6x4 – 5x3 + 2x + 3]
∴ y = `"u"^6`
∴ `("d"y)/"du"` = 6u6–1
∴ `("d"y)/"du"` = 6(u)5
and `"du"/("d"x) = 24x^3 - 15x^2 + 2`
By chain rule,
`("d"y)/("d"x) = ("d"y)/"du" xx "du"/("d"x)`
∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^5 xx (24x^3 - 15x^2 + 2)`
APPEARS IN
संबंधित प्रश्न
If y = log (cos ex) then find `"dy"/"dx".`
Find the second order derivatives of the following : e4x. cos 5x
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
Find `"dy"/"dx"`, if y = xx.
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
Differentiate `sqrt(tansqrt(x))` w.r.t. x
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`