Advertisements
Advertisements
प्रश्न
y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`
Solution: Given,
y = (6x4 – 5x3 + 2x + 3)6
Let u = `[6x^4 - 5x^3 + square + 3]`
∴ y = `"u"^square`
∴ `("d"y)/"du"` = 6u6–1
∴ `("d"y)/"du"` = 6( )5
and `"du"/("d"x) = 24x^3 - 15(square) + 2`
By chain rule,
`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`
∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`
उत्तर
Given,
y = (6x4 – 5x3 + 2x + 3)6
Let u = [6x4 – 5x3 + 2x + 3]
∴ y = `"u"^6`
∴ `("d"y)/"du"` = 6u6–1
∴ `("d"y)/"du"` = 6(u)5
and `"du"/("d"x) = 24x^3 - 15x^2 + 2`
By chain rule,
`("d"y)/("d"x) = ("d"y)/"du" xx "du"/("d"x)`
∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^5 xx (24x^3 - 15x^2 + 2)`
APPEARS IN
संबंधित प्रश्न
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
Find `"dy"/"dx"` if cos (xy) = x + y
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
The derivative of f(x) = ax, where a is constant is x.ax-1.
Differentiate `"e"^("4x" + 5)` with respect to 104x.
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
Derivative of ex sin x w.r.t. e-x cos x is ______.
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
`"d"/("d"x) [sin(1 - x^2)]^2` = ______.
If f(x) = |cos x – sinx|, find `"f'"(pi/6)`
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`