Advertisements
Advertisements
प्रश्न
The derivative of f(x) = ax, where a is constant is x.ax-1.
पर्याय
True
False
उत्तर
This statement is False.
Explanation:
f(x) = ax
f(x) = ax.log a
संबंधित प्रश्न
If y = eax. cos bx, then prove that
`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
State whether the following is True or False:
The derivative of polynomial is polynomial.
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
Differentiate `sqrt(tansqrt(x))` w.r.t. x
If f(x) = |cos x|, find f'`((3pi)/4)`
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that
`dy/dx = dy/(du) xx (du)/dx`
Hence find `dy/dx` if y = log(x2 + 5)
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.