Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
उत्तर
y = `root(3)("a"^2 + "x"^2)`
∴ y = `("a"^2 + "x"^2)^(1/3)`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"[("a"^2 + "x"^2)^(1/3)]`
`= 1/3 ("a"^2 + "x"^2)^(-2/3) * "d"/"dx" ("a"^2 + "x"^2)`
`= 1/3 ("a"^2 + "x"^2)^(-2/3) * (0 + 2"x")`
∴ `"dy"/"dx" = "2x"/3 ("a"^2 + "x"^2)^(-2/3)`
APPEARS IN
संबंधित प्रश्न
If y = eax. cos bx, then prove that
`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
If y = x10, then `("d"y)/("d"x)` is ______
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
If f(x) = |cos x – sinx|, find `"f'"(pi/6)`
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
y = cos (sin x)
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`
Find `dy/dx` if, `y = e^(5x^2 - 2x + 4)`.