Advertisements
Advertisements
प्रश्न
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
उत्तर
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = bbunderline"y"/"x"`
Explanation:
xm.yn = `("x + y")^("m + n")`
log(xm.yn) = log`("x + y")^("m + n")`
mlogx + nlogy = (m + n) log(x + y) ...`[(log(ab)=loga+logb),(logm^n=nlogm)]`
Diff. w.r.t.x.
`mxx1/x+nxx1/y.dy/dx=(m+n)1/(x+y)xx(1+dy/dx)`
`m/x+n/y.dy/dx=(m+n)/(x+y)+(m+n)/(x+y)dy/dx`
`n/ydy/dx-(m+n)/(x+y)dy/dx=(m+n)/(x+y)-m/x`
`dy/dx(n/y-(m+n)/(x+y))=(m+n)/(x+y)-m/x`
`dy/dx[(nx+ny-my-ny)/(y(x+y))]=(mx+mx-mx-my)/((x+y)x)`
`dy/dx=(nx-my)/x xxy/(nx-my)`
`dy/dx=y/x`
APPEARS IN
संबंधित प्रश्न
If y = log (cos ex) then find `"dy"/"dx".`
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
State whether the following is True or False:
The derivative of polynomial is polynomial.
If y = x2, then `("d"^2y)/("d"x^2)` is ______
If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______
If f(x) = |cos x|, find f'`((3pi)/4)`
y = sin (ax+ b)
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`