मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

If y = x2, then d2ydx2 is ______ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = x2, then `("d"^2y)/("d"x^2)` is ______

रिकाम्या जागा भरा

उत्तर

2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.3: Differentiation - Q.2

संबंधित प्रश्‍न

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0


Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`


Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)


Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x  – x2.


If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______


If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


Choose the correct alternative:

If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?


If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______ 


If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______ 


Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`


If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`


If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)` 


If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.


The differential equation of (x - a)2 + y2 = a2 is ______ 


If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.


If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`


If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×