Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
उत्तर
y = `"a"^((1 + log "x"))`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx" "a"^((1 + log "x"))`
`= "a"^((1 + log "x")) * log "a" * "d"/"dx" (1 + log "x")`
`= "a"^((1 + log "x")) * log "a" * (0 + 1/"x")`
∴ `"dy"/"dx" = "a"^((1 + log "x")) * log "a" * 1/"x"`
APPEARS IN
संबंधित प्रश्न
If y = eax. cos bx, then prove that
`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81
Find `"dy"/"dx"` if ex+y = cos(x – y)
State whether the following is True or False:
The derivative of polynomial is polynomial.
Find `"dy"/"dx"`, if y = xx.
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
Differentiate `sqrt(tansqrt(x))` w.r.t. x
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
If y = log (cos ex), then `"dy"/"dx"` is:
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`