Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`, if y = xx.
उत्तर
y = xx.
Taking logarithm of both sides, we get
log y = log (xx)
∴ log y = x log x
Differentiating both sides w.r.t.x, we get
`1/"y" * "dy"/"dx" = "x" * "d"/"dx" (log "x") + log "x" * "d"/"dx" ("x")`
`= "x" * 1/"x" + log "x" (1)`
∴ `1/"y" * "dy"/"dx" = 1 + log x`
∴ `"dy"/"dx" = "y"(1 + log "x")`
∴ `"dy"/"dx" = "x"^"x" (1 + log "x")`
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______
Differentiate `sqrt(tansqrt(x))` w.r.t. x
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
If f(x) = |cos x – sinx|, find `"f'"(pi/6)`
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`