Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
उत्तर
y = `2^("x"^"x")`
Taking logarithm of both sides, we get
`"dy"/"dx" = 2^("x"^"x") * log 2 * "d"/"dx" ("x"^"x")` ...(i)
Let u = xx
log u = log (xx)
∴ log y = x log x
Differentiating both sides w.r.t.x, we get
`1/"u" * "du"/"dx" = "x" * "d"/"dx" (log "x") + log "x" * "d"/"dx" ("x")`
= `"x" * 1/"x" + log "x" (1)`
∴ `1/"u" * "du"/"dx" = 1 + log "x"`
∴ `"dy"/"dx" = "u"(1 + log "x")`
∴ `"d"/"dx"("x"^"x") = "x"^"x" (1 + log "x")` ...(ii)
Substituting (ii) in (i), we get
`"dy"/"dx" = 2^("x"^"x") * log 2 * "x"^"x" (1 + log "x")`
`"dy"/"dx" = 2^("x"^"x") * "x"^"x" * log 2 (1 + log "x")`
APPEARS IN
संबंधित प्रश्न
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`
Solution: Given,
y = (6x4 – 5x3 + 2x + 3)6
Let u = `[6x^4 - 5x^3 + square + 3]`
∴ y = `"u"^square`
∴ `("d"y)/"du"` = 6u6–1
∴ `("d"y)/"du"` = 6( )5
and `"du"/("d"x) = 24x^3 - 15(square) + 2`
By chain rule,
`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`
∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.
Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`