Advertisements
Advertisements
प्रश्न
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
पर्याय
35
12
`7/5`
105
उत्तर
35
संबंधित प्रश्न
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
If y = log (cos ex) then find `"dy"/"dx".`
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `"dy"/"dx"` if xey + yex = 1
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find the second order derivatives of the following : e2x . tan x
Find the second order derivatives of the following : e4x. cos 5x
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
The derivative of f(x) = ax, where a is constant is x.ax-1.
State whether the following is True or False:
The derivative of polynomial is polynomial.
`d/dx(10^x) = x*10^(x - 1)`
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
Find `"dy"/"dx"`, if y = xx.
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
If y = x10, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b)) tan x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
Derivative of ex sin x w.r.t. e-x cos x is ______.
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
If f(x) = |cos x|, find f'`((3pi)/4)`
If f(x) = |cos x – sinx|, find `"f'"(pi/6)`
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = cos (sin x)
y = `2sqrt(cotx^2)`
y = `cos sqrt(x)`
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
If y = 2x2 + a2 + 22 then `dy/dx` = ______.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that
`dy/dx = dy/(du) xx (du)/dx`
Hence find `dy/dx` if y = log(x2 + 5)
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.