Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
उत्तर
y = `"e"^(5"x"^2 - 2"x" + 4)`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"("e"^(5"x"^2 - 2"x" + 4))`
`= "e"^(5"x"^2 - 2"x" + 4) * "d"/"dx"(5"x"^2 - 2"x" + 4)`
`= "e"^(5"x"^2 - 2"x" + 4) * [5(2"x") - 2 + 0]`
∴ `"dy"/"dx" = (10"x" - 2)* "e"^(5"x"^2 - 2"x" + 4)`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find the second order derivatives of the following : e2x . tan x
Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0
If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
`"d"/("d"x) [sin(1 - x^2)]^2` = ______.
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
y = cos (sin x)
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`